Amorphous materials reference
Note
See Amorphous materials for an overview and description of the amorphous applications.
Fluctuation EM
This module contains the UDF for applying FEM to a single ring (mostly useful for interactive use).
- class libertem.udf.FEM.FEMUDF(center, rad_in, rad_out)[source]
Perform Fluctuation EM [GT97]
This UDF calculates the standard deviation within a ring around the zero order diffraction peak.
- Parameters:
Examples
>>> fem_udf = FEMUDF(center=(8, 8), rad_in=4, rad_out=6) >>> result = ctx.run_udf(dataset=dataset, udf=fem_udf) >>> np.array(result["intensity"]).shape (16, 16)
- libertem.udf.FEM.run_fem(ctx, dataset, center, rad_in, rad_out, roi=None)[source]
Return a standard deviation(SD) value for each frame of pixels which belong to ring mask.
- Parameters:
ctx (libertem.api.Context) –
dataset (libertem.io.dataset.base.DataSet) – A dataset with 1- or 2-D scan dimensions and 2-D frame dimensions
center (tuple) – (x,y) - coordinates of a center of a ring for a masking region of interest to calculate SD
rad_in (int) – Inner radius of a ring mask
rad_out (int) – Outer radius of a ring mask
- Returns:
pass_results – Returns a standard deviation(SD) value for each frame of pixels which belong to ring mask. To return 2-D array use pass_results[‘intensity’].data
- Return type:
Radial Fourier Analysis
This module contains the radial fourier series analysis, for analysing frequencies and symmetries of diffraction patterns.
- class libertem.analysis.radialfourier.RadialFourierResultSet(results: list[AnalysisResult] | Callable[[], list[AnalysisResult]], raw_results=None)[source]
Result set of a
RadialFourierAnalysis
Running a
RadialFourierAnalysis
vialibertem.api.Context.run()
on a dataset returns an instance of this class. It contains the Fourier coefficients for each bin. Seelibertem.api.Context.create_radial_fourier_analysis()
for available parameters and Radial Fourier Series for a description of the application!New in version 0.3.0.
- dominant_0, absolute_0_0, absolute_0_1, ..., absolute_0_<max_order>, phase_0_0, ..., phase_0_<max_order>, complex_0_0, ..., complex_0_<max_order>; dominant_1, absolute_1_0, ..., complex_1_<max_order>; dominant_<nbins-1>, ..., complex_<nbins-1>_<max_order>
Results for each bin: dominant Fourier coefficient (indicates symmetry), absolute values of each Fourier coefficient, phase values of each Fourier coefficient, complex values of each Fourier coefficient. The results have the shape of the navigation dimension.
- raw_results
Complex numbers, shape (<n_bins>, <max_order + 1>, *(<ds.shape.nav>))
- Type: