User-defined functions: advanced topics

The UDF interface offers a wide range of features to help implement advanced functionality and to optimize the performance of an UDF. These features are optional in order to keep UDFs that don’t need them simple.

See User-defined functions (UDFs) for an introduction to basic topics.

Tiled processing

Many operations can be significantly optimized by working on stacks of frames. You can often perform loop nest optimization to improve the locality of reference, for example using numba, or using an optimized NumPy function.

As an example, applying a gain map and subtracting dark frames can be up to an order of magnitude faster when properly optimized compared to a naive NumPy implementation. These optimizations are only possible if you have access to data from more than one frame.

For very large frames, another problem arises: a stack of frames would be too large to efficiently handle, as it would no longer fit into even the L3 cache, which is the largest cache in most CPUs. For these cases, we support a tiled reading and processing strategy. Tiled means we slice the frame into disjoint rectangular regions. A tile then is the data from a single rectangular region for multiple frames.

For example, in case of K2IS data, frames have a shape of (1860, 2048). When reading them with the tiled strategy, a single tile will contain data from 16 subsequent frames, and each rectangle has a shape of (930, 16), which is the natural block size for K2IS data. That means the tiles will have a shape of (16, 930, 16), and processing 16 frames from the data set means reading 256 individual tiles.

Loading a tile of this size as float32 data still fits comfortably into usual L3 CPU caches (~1MB per core), and thus enables efficient processing. As a comparison, a whole (1860, 2048) frame is about 15MB large, and accessing it repeatedly means having to load data from the slower main memory.


You may have noticed that we talk about block sizes of 1MB as efficient in the L3 cache, but many CPUs have larger L3 caches. As the L3 cache is shared between cores, and LiberTEM tries to use multiple cores, the effectively available L3 cache has to be divided by number of cores.

Real-world example

The libertem_blobfinder.udf.correlation.SparseCorrelationUDF uses process_tile() to implement a custom version of a ApplyMasksUDF that works on log-scaled data. The mask stack is stored in a libertem.common.container.MaskContainer as part of the task data. Note how the self.meta.slice property of type Slice is used to extract the region from the mask stack that matches the tile using the facilities of a MaskContainer. After reshaping, transposing and log scaling the tile data into the right memory layout, the mask stack is applied to the data with a dot product. The result is added to the buffer in order to merge it with the results of the other tiles because addition is the correct merge function for a dot product. Other operations would require a different merge function here, for example numpy.max() if a global maximum is to be calculated.

def process_tile(self, tile):
    tile_slice = self.meta.slice
    c = self.task_data['mask_container']
    tile_t = np.zeros(
        ([1:]), tile.shape[0]),
    log_scale(tile.reshape((tile.shape[0], -1)).T, out=tile_t)

    sl = c.get(key=tile_slice, transpose=False)
    self.results.corr[:] +=

Partition processing

Some algorithms can benefit from processing entire partitions, for example if they require several passes over the data. In most cases, tiled processing will be faster because it uses the L3 cache more efficiently. For that reason, per-partition processing should only be used if there are clear indications for it. Implementing process_partition() activates per-partition processing for an UDF.


The UDF interface looks for methods in the order process_tile(), process_frame(), process_partition(). For now, the first in that order is executed. In the future, composition of UDFs may allow to use different methods depending on the circumstances. process_tile() is the most general method and allows by-frame and by-partition processing as well.

Post-processing of partition results

Post-processing allows to perform additional processing steps once the data of a partition is completely processed with process_frame(), process_tile() or process_partition(). Post-processing is particularly relevant for tiled processing since that allows to combine the performance benefits of tiled processing for a first reduction step with subsequent steps that require reduced data from complete frames or even a complete partition.

Real-world example from libertem_blobfinder.udf.correlation.SparseCorrelationUDF which evaluates the correlation maps that have been generated with the dot product in the previous processing step and places the results in additional result buffers:

def postprocess(self):
    steps = 2 * self.params.steps + 1
    corrmaps = self.results.corr.reshape((
        -1,  # frames
        len(self.params.peaks),  # peaks
        steps,  # Y steps
        steps,  # X steps
    peaks = self.params.peaks
    (centers, refineds, peak_values, peak_elevations) = self.output_buffers()
    for f in range(corrmaps.shape[0]):
            corrs=corrmaps[f], peaks=peaks, crop_size=self.params.steps,
            out_centers=centers[f], out_refineds=refineds[f],
            out_heights=peak_values[f], out_elevations=peak_elevations[f]

The libertem.udf.base.UDFPostprocessMixin.postprocess() method is called for each partition on the worker process, before the results from different partitions have been merged.

Post-processing after merging

If you want to implement a post-processing step that is run on the main node after merging result buffers, you can override libertem.udf.base.UDF.get_results():

class AverageUDF(UDF):
    Like SumUDF, but also computes the average
    def get_result_buffers(self):
        return {
            'sum': self.buffer(kind='sig', dtype=np.float32),
            'num_frames': self.buffer(kind='single', dtype=np.uint64),
            'average': self.buffer(kind='sig', dtype=np.float32, use='result_only'),

    def process_frame(self, frame):
        self.results.sum[:] += frame
        self.results.num_frames[:] += 1

    def merge(self, dest, src):
        dest.sum[:] += src.sum
        dest.num_frames[:] += src.num_frames

    def get_results(self):
        return {
            # NOTE: 'sum' omitted here, will be returned unchanged
            'average': self.results.sum / self.results.num_frames,

ctx.run_udf(dataset=dataset, udf=AverageUDF())

Note that UDF.get_result_buffers() returns a placeholder entry for the average result using use='result_only', which is then filled in get_results. We don’t need to repeat those buffers that should be returned unchanged; if you want to omit a buffer from the results completely, you can declare it as private with self.buffer(..., use='private') in get_result_buffers.

UDF.get_results() should return the results as a dictionary of numpy arrays, with the keys matching those returned by UDF.get_result_buffers().

When returned from Context.run_udf(), all results are wrapped into BufferWrapper instances. This is done primarily to get convenient access to a version of the result that is suitable for visualization, even if a roi was used, but still allow access to the raw result using BufferWrapper.raw_data attribute.

The detailed rules for buffer declarations, get_result_buffers and get_results are:

  1. All buffers are declared in get_result_buffers

  2. If a buffer is only computed in get_results, it should be marked via use='result_only' so it isn’t allocated on workers

  3. If a buffer is only used as intermediary result, it should be marked via use='private'

  4. Not including a buffer in get_results means it will either be passed on unchanged, or dropped if use='private'

  5. It’s an error to omit an use='result_only' buffer in get_results

  6. It’s an error to include a use='private' buffer in get_results

  7. All results are returned from Context.run_udf as BufferWrapper instances

  8. By default, if get_results is not implemented, use='private' buffers are dropped, and others are passed through unchanged

New in version 0.7.0: UDF.get_results() and the use argument for UDF.buffer() were added.


Pre-processing allows to initialize result buffers before processing or merging. This is particularly useful to set up dtype=object buffers, for example ragged arrays, or to initialize buffers for operations where the neutral element is not 0. libertem.udf.base.UDFPreprocessMixin.preprocess() is executed after all buffers are allocated, but before the data is processed. On the worker nodes it is executed with views set for the whole partition masked by the current ROI. On the central node it is executed with views set for the whole dataset masked by the ROI.

New in version 0.3.0.

Changed in version 0.5.0: libertem.udf.base.UDFPreprocessMixin.preprocess() is executed on the main node, too. Views for aux data are set correctly on the main node. Previously, it was only executed on the worker nodes.

AUX data

If a parameter is an instance of BufferWrapper that was created using the aux_data() class method, the UDF interface will interpret it as auxiliary data. It will set the views for each tile/frame/partition accordingly so that accessing the parameter returns a view of the auxiliary data matching the data portion that is currently being processed. That way, it is possible to pass parameters individually for each frame or to mask the signal dimension.

Note that the BufferWrapper instance for AUX data should always be created using the aux_data() class method and not directly by instantiating a BufferWrapper since aux_data() ensures that it is set up correctly.

For masks in the signal dimension that are used for dot products in combination with per-tile processing, a MaskContainer allows to use more advanced slicing and transformation methods targeted at preparing mask stacks for optimal dot product performance.

Task data

A UDF can generate task-specific intermediate data on the worker nodes by defining a get_task_data() method. The result is available as an instance of UDFData in self.task_data. Depending on the circumstances, this can be more efficient than making the data available as a parameter since it avoids pickling, network transport and unpickling.

This non-trivial example from libertem_blobfinder.udf.correlation.SparseCorrelationUDF creates a MaskContainer based on the parameters in self.params. This MaskContainer is then available as self.task_data['mask_container'] within the processing functions.

def get_task_data(self):
    match_pattern = self.params.match_pattern
    crop_size = match_pattern.get_crop_size()
    size = (2 * crop_size + 1, 2 * crop_size + 1)
    template = match_pattern.get_mask(sig_shape=size)
    steps = self.params.steps
    peak_offsetY, peak_offsetX = np.mgrid[-steps:steps + 1, -steps:steps + 1]

    offsetY = self.params.peaks[:, 0, np.newaxis, np.newaxis] + peak_offsetY - crop_size
    offsetX = self.params.peaks[:, 1, np.newaxis, np.newaxis] + peak_offsetX - crop_size

    offsetY = offsetY.flatten()
    offsetX = offsetX.flatten()

    stack = functools.partial(
    # CSC matrices in combination with transposed data are fastest
    container = MaskContainer(mask_factories=stack, dtype=np.float32,

    kwargs = {
        'mask_container': container,
        'crop_size': crop_size,
    return kwargs

Meta information

Advanced processing routines may require context information about the processed data set, ROI and current data portion being processed. This information is available as properties of the libertem.udf.base.UDF.meta attribute of type UDFMeta.

Input data shapes and types

Common applications include allocating buffers with a dtype or shape that matches the dataset or partition via dataset_dtype, input_dtype, dataset_shape and partition_shape.

Device class

New in version 0.6.0.

The currently used compute device class can be accessed through libertem.udf.base.UDFMeta.device_class. It defaults to ‘cpu’ and can be ‘cuda’ for UDFs that make use of CuPy support support.

ROI and current slice

For more advanced applications, the ROI and currently processed data portion are available as libertem.udf.base.UDFMeta.roi and libertem.udf.base.UDFMeta.slice. This allows to replace the built-in masking behavior of BufferWrapper for result buffers and aux data with a custom implementation. The mask container for tiled processing example makes use of these attributes to employ a libertem.common.container.MaskContainer instead of a shape="sig" buffer in order to optimize dot product performance and support sparse masks.

The slice is in the reference frame of the dataset, masked by the current ROI, with flattened navigation dimension. This example illustrates the behavior by implementing a custom version of the simple “sum over sig” example. It allocates a custom result buffer that matches the navigation dimension as it appears in processing:

import numpy as np

from libertem.udf import UDF

class PixelsumUDF(UDF):
    def get_result_buffers(self):
        if self.meta.roi is not None:
            navsize = np.count_nonzero(self.meta.roi)
            navsize =
        return {
            'pixelsum_nav_raw': self.buffer(
                extra_shape=(navsize, ),

    def merge(self, dest, src):
        dest.pixelsum_nav_raw[:] += src.pixelsum_nav_raw

    def process_frame(self, frame):
        np_slice = self.meta.slice.get(nav_only=True)
        self.results.pixelsum_nav_raw[np_slice] = np.sum(frame)


New in version 0.6.0.

The coordinates of the current frame, tile or partition within the true dataset navigation dimension, as opposed to the current slice that is given in flattened nav dimensions with applied ROI, is available through coordinates. The following UDF simply collects the coordinate info for demonstration purposes. A real-world example that uses the coordinates is the UDF implementation of single side band ptychography.

import numpy as np

from libertem.udf import UDF

class CoordUDF(UDF):
    def get_result_buffers(self):
        # Declare a buffer that fits the coordinates,
        # i.e. one int per nav axis for each nav position
        nav_dims = len(self.meta.dataset_shape.nav)
        return {
            'coords': self.buffer(
                extra_shape=(nav_dims, ),

    def process_tile(self, tile):
        # Simply copy the coordinates into
        # the result buffer
        self.results.coords[:] = self.meta.coordinates

my_roi = np.zeros(dataset.shape.nav, dtype=bool)
my_roi[7, 13] = True
my_roi[11, 3] = True

res = ctx.run_udf(

assert np.all(
    res['coords'].raw_data == np.array([(7, 13), (11, 3)])

Preferred input dtype

New in version 0.4.0.

UDFs can override get_preferred_input_dtype() to indicate a “lowest common denominator” compatible dtype. The actual input dtype is determined by combining the indicated preferred dtype with the input dataset’s native dtype using numpy.result_type(). The default preferred dtype is numpy.float32. Returning UDF.USE_NATIVE_DTYPE, which is currently identical to numpy.bool, will switch to the dataset’s native dtype since numpy.bool behaves as a neutral element in numpy.result_type().

If an UDF requires a specific dtype rather than only preferring it, it should override this method and additionally check the actual input type, throw an error when used incorrectly and/or implement a meaningful conversion in its processing routine since indicating a preferred dtype doesn’t enforce it. That way, unsafe conversions are performed explicitly in the UDF rather than indirectly in the back-end.

CuPy support

New in version 0.6.0.

LiberTEM can use CUDA devices through CuPy. Since CuPy largely replicates the NumPy array interface, any UDF that uses NumPy for its main processing can likely be ported to use both CPUs and CUDA devices in parallel. Some adjustments are often necessary to account for minor differences between NumPy and CuPy. CuPy is most beneficial for compute-heavy tasks with good CUDA math library support such as large Fourier transforms or matrix products.

In order to activate CuPy processing, a UDF can overwrite the get_backends() method. By default this returns ('numpy',), indicating only NumPy support. By returning ('numpy', 'cupy') or ('cupy',), a UDF activates being run on both CUDA and CPU workers, or exclusively on CUDA workers. Using cuda instead of cupy schedules on CUDA workers, but without using the CuPy library. This is useful for running code that uses CUDA in a different way, for example integration of C++ CUDA code, and allows to skip installation of CuPy in this situation.

The libertem.udf.base.UDF.xp property points to the numpy or cupy module, depending which back-end is currently used. By using self.xp instead of the usual np for NumPy, one can write UDFs that use the same code for CUDA and CPU processing.

Result buffers can be declared as device arrays by setting self.buffer(..., where='device') in get_result_buffers(). That allows to keep data in the device until a partition is completely processed and the result is exported to the leader node.

The input argument for process_*() functions is already provided as a CuPy array instead of NumPy array if CuPy is used.

A UDF should only use one GPU at a time. If cupy is used, the correct device to use is set within CuPy in the back-end and should not be modified in the UDF itself. If cuda is used, it is the responsibility of the user to set the device ID to the value returned by libertem.common.backend.get_use_cuda(). The environment variable CUDA_VISIBLE_DEVICES can be set before any CUDA library is loaded to control which devices are visible.

The run_udf() method allows setting the backends attribute to ('numpy',) ('cupy',) or ('cuda',) to restrict execution to CPU-only or CUDA-only on a hybrid cluster. This is mostly useful for testing.

Auto UDF

The AutoUDF class and map() method allow to run simple functions that accept a frame as the only parameter with an auto-generated kind="nav" result buffer over a dataset ad-hoc without defining an UDF class. For more advanced processing, such as custom merge functions, post-processing or performance optimization through tiled processing, defining an UDF class is required.

As an alternative to Auto UDF, you can use the make_dask_array() method to create a dask.array from a DataSet to perform calculations. See Integration with Dask arrays for more details.

The AutoUDF class determines the output shape and type by calling the function with a mock-up frame of the same type and shape as a real detector frame and converting the return value to a NumPy array. The extra_shape and dtype parameters for the result buffer are derived automatically from this NumPy array.

Additional constant parameters can be passed to the function via functools.partial(), for example. The return value should be much smaller than the input size for this to work efficiently.

Example: Calculate sum over the last signal axis.

import functools

result =
    f=functools.partial(np.sum, axis=-1)

# or alternatively:
from libertem.udf import AutoUDF

udf = AutoUDF(f=functools.partial(np.sum, axis=-1))
result = ctx.run_udf(dataset=dataset, udf=udf)