Source code for libertem.io.dataset.base.tiling

import logging

import numba
from numba.typed import List as NumbaList
import numpy as np
from sparseconverter import check_shape

from libertem.common.numba import numba_ravel_multi_index_single as _ravel_multi_index, cached_njit


log = logging.getLogger(__name__)


@numba.njit(inline='always')
def _default_px_to_bytes(
    bpp, frame_in_file_idx, slice_sig_size, sig_size, sig_origin,
    frame_footer_bytes, frame_header_bytes, file_header_bytes,
    file_idx, read_ranges,
):
    """
    Convert from a slice (sig_origin, slice_sig_size) to a byte slice (start, stop)
    and append the result to the read_ranges numba List
    """
    # we are reading a part of a single frame, so we first need to find
    # the offset caused by headers and footers:
    footer_offset = frame_footer_bytes * frame_in_file_idx
    header_offset = frame_header_bytes * (frame_in_file_idx + 1)
    byte_offset = file_header_bytes + footer_offset + header_offset

    # now let's figure in the current frame index:
    # (go down into the file by full frames; `sig_size`)
    offset = byte_offset + frame_in_file_idx * sig_size * bpp // 8

    # offset in px in the current frame:
    sig_origin_bytes = sig_origin * bpp // 8

    start = offset + sig_origin_bytes

    # size of the sig part of the slice:
    sig_size_bytes = slice_sig_size * bpp // 8

    stop = start + sig_size_bytes

    read_ranges.append((file_idx, start, stop))


@numba.njit(boundscheck=True, nogil=True)
def _find_file_for_frame_idx(fileset_arr, frame_idx):
    """
    Find the file in `fileset_arr` that contains
    `frame_idx` and return its index using binary search.

    Worst case: something like 2**20 files, each containing
    a single frame.

    `fileset_arr` is an array of shape (number_files, 4)
    where `fileset_arr[i]` is:

        (start_idx, end_idx, file_header_size, file_idx)

    It must be sorted by `start_idx` and the defined intervals must not overlap.
    """
    while True:
        num_files = fileset_arr.shape[0]
        mid = num_files // 2
        mid_file = fileset_arr[mid]

        if mid_file[0] <= frame_idx and mid_file[1] > frame_idx:
            return mid_file[2]
        elif mid_file[0] > frame_idx:
            fileset_arr = fileset_arr[:mid]
        else:
            fileset_arr = fileset_arr[mid + 1:]


@numba.njit(inline='always')
def _default_read_ranges_tile_block(
    slices_arr, fileset_arr, slice_sig_sizes, sig_origins,
    inner_indices_start, inner_indices_stop, frame_indices, sig_size,
    px_to_bytes, bpp, frame_header_bytes, frame_footer_bytes, file_idxs,
    slice_offset, extra, sig_shape,
):
    result = NumbaList()

    # positions in the signal dimensions:
    for slice_idx in range(slices_arr.shape[0]):
        # (offset, size) arrays defining what data to read (in pixels)
        # NOTE: assumes contiguous tiling scheme
        # (i.e. a shape like (1, 1, ..., 1, X1, ..., XN))
        # where X1 is <= the dataset shape at that index, and X2, ..., XN are
        # equal to the dataset shape at that index
        slice_origin = slices_arr[slice_idx][0]
        slice_shape = slices_arr[slice_idx][1]
        slice_sig_size = slice_sig_sizes[slice_idx]
        sig_origin = sig_origins[slice_idx]

        read_ranges = NumbaList()

        # inner "depth" loop along the (flat) navigation axis of a tile:
        for i, inner_frame_idx in enumerate(range(inner_indices_start, inner_indices_stop)):
            inner_frame = frame_indices[inner_frame_idx]

            file_idx = file_idxs[i]
            f = fileset_arr[file_idx]

            frame_in_file_idx = inner_frame - f[0]
            file_header_bytes = f[3]

            # px_to_bytes is the format-specific translation of pixel
            # coordinates (slice_sig_size, sig_size, sig_origin)
            # to bytes, which are appended as tuples (file_idx, start, stop)
            # to the `read_ranges` list.
            px_to_bytes(
                bpp=bpp,
                frame_in_file_idx=frame_in_file_idx,
                slice_sig_size=slice_sig_size,
                sig_size=sig_size,
                sig_origin=sig_origin,
                frame_footer_bytes=frame_footer_bytes,
                frame_header_bytes=frame_header_bytes,
                file_header_bytes=file_header_bytes,
                file_idx=file_idx,
                read_ranges=read_ranges,
            )

        # the indices are compressed to the selected frames
        compressed_slice = np.array([
            [slice_offset + inner_indices_start] + [i for i in slice_origin],
            [inner_indices_stop - inner_indices_start] + [i for i in slice_shape],
        ])
        result.append((slice_idx, compressed_slice, read_ranges))

    return result


[docs] def make_get_read_ranges( px_to_bytes=_default_px_to_bytes, read_ranges_tile_block=_default_read_ranges_tile_block, ): """ Translate the `TilingScheme` combined with the `roi` into (pixel)-read-ranges, together with their tile slices. Parameters ---------- start_at_frame Dataset-global first frame index to read stop_before_frame Stop before this frame index tiling_scheme Description on how the data should be tiled fileset_arr Array of shape (number_of_files, 3) where the last dimension contains the following values: `(start_idx, end_idx, file_idx)`, where `[start_idx, end_idx)` defines which frame indices are contained in the file. roi Region of interest (for the full dataset) bpp : int Bits per pixel, including padding Returns ------- (tile_slice, read_ranges) read_ranges is an ndarray with shape (number_of_tiles, depth, 3) where the last dimension contains: file index, start_byte, stop_byte """ @cached_njit(boundscheck=True, cache=True, nogil=True) def _get_read_ranges_inner( start_at_frame, stop_before_frame, roi_nonzero, depth, slices_arr, fileset_arr, sig_shape, bpp, sync_offset=0, extra=None, frame_header_bytes=0, frame_footer_bytes=0, ): result = NumbaList() # Use NumPy prod for Numba compilation sig_size = np.prod(np.array(sig_shape).astype(np.int64)) if roi_nonzero is None: frame_indices = np.arange(max(0, start_at_frame), stop_before_frame) # in case of a negative sync_offset, start_at_frame can be negative if start_at_frame < 0: slice_offset = abs(sync_offset) else: slice_offset = start_at_frame - sync_offset else: shifted_roi = roi_nonzero + sync_offset roi_mask = np.logical_and(shifted_roi >= max(0, start_at_frame), shifted_roi < stop_before_frame) frame_indices = shifted_roi[roi_mask] if start_at_frame < 0: slice_offset = np.sum(roi_nonzero < abs(sync_offset)) else: slice_offset = np.sum(roi_nonzero < start_at_frame - sync_offset) num_indices = frame_indices.shape[0] # indices into `frame_indices`: inner_indices_start = 0 inner_indices_stop = min(depth, num_indices) # this should be `prod(..., axis=-1)``, which is not supported by numba yet: # slices that divide the signal dimensions: slice_sig_sizes = np.array([ # Use NumPy prod for Numba compilation np.prod(slices_arr[slice_idx, 1, :].astype(np.int64)) for slice_idx in range(slices_arr.shape[0]) ]) sig_origins = np.array([ _ravel_multi_index(slices_arr[slice_idx][0], sig_shape) for slice_idx in range(slices_arr.shape[0]) ]) # outer "depth" loop skipping over `depth` frames at a time: while inner_indices_start < num_indices: file_idxs = np.array([ _find_file_for_frame_idx(fileset_arr, frame_indices[inner_frame_idx]) for inner_frame_idx in range(inner_indices_start, inner_indices_stop) ]) for slice_idx, compressed_slice, read_ranges in read_ranges_tile_block( slices_arr, fileset_arr, slice_sig_sizes, sig_origins, inner_indices_start, inner_indices_stop, frame_indices, sig_size, px_to_bytes, bpp, frame_header_bytes, frame_footer_bytes, file_idxs, slice_offset, extra=extra, sig_shape=sig_shape, ): result.append((compressed_slice, read_ranges, slice_idx)) inner_indices_start = inner_indices_start + depth inner_indices_stop = min(inner_indices_stop + depth, num_indices) result_slices = np.zeros((len(result), 2, 1 + len(sig_shape)), dtype=np.int64) for tile_idx, res in enumerate(result): result_slices[tile_idx] = res[0] if len(result) == 0: return ( result_slices, np.zeros((len(result), depth, 3), dtype=np.int64), np.zeros((len(result)), dtype=np.int64), ) lengths = [len(res[1]) for res in result] max_rr_per_tile = max(lengths) slice_indices = np.zeros(len(result), dtype=np.int64) # read_ranges_tile_block can decide how many entries there are per read range, # so we need to generate a result array with the correct size: rr_num_entries = max(3, len(result[0][1][0])) result_ranges = np.zeros((len(result), max_rr_per_tile, rr_num_entries), dtype=np.int64) for tile_idx, res in enumerate(result): for depth_idx, read_range in enumerate(res[1]): result_ranges[tile_idx][depth_idx] = read_range slice_indices[tile_idx] = res[2] return result_slices, result_ranges, slice_indices return _get_read_ranges_inner
default_get_read_ranges = make_get_read_ranges()
[docs] class DataTile: def __init__(self, data, tile_slice, scheme_idx): if isinstance(data, DataTile): data = data.data check_shape(data, tile_slice.shape) self._data = data self.tile_slice = tile_slice self.scheme_idx = scheme_idx @property def flat_data(self) -> np.ndarray: """ Flatten the data. The result is a 2D array where each row contains pixel data from a single frame. It is just a reshape, so it is a view into the original data. """ shape = self.tile_slice.shape tileshape = ( shape.nav.size, # stackheight, number of frames we process at once shape.sig.size, # framesize, number of pixels per tile ) return self._data.reshape(tileshape) @property def dtype(self): return self._data.dtype @property def shape(self): return tuple(self.tile_slice.shape) @property def size(self): return self.tile_slice.shape.size @property def data(self): return self._data @property def c_contiguous(self): try: return self._data.flags.c_contiguous except AttributeError: return None def __repr__(self): return "<DataTile %r scheme_idx=%d>" % (self.tile_slice, self.scheme_idx)