Source code for libertem.executor.inline

from typing import Any
from collections.abc import Iterable
import contextlib

import cloudpickle
import psutil
import uuid

from .base import BaseJobExecutor
from libertem.common.executor import (
    Environment, SimpleWorkerQueue, TaskCommHandler, TaskProtocol, WorkerContext, WorkerQueue
)
from libertem.common.scheduler import Worker, WorkerSet
from libertem.common.backend import get_use_cuda


[docs] class InlineWorkerContext(WorkerContext): def __init__(self, queue: SimpleWorkerQueue, msg_queue: SimpleWorkerQueue): self._queue = queue self._msg_queue = msg_queue def get_worker_queue(self) -> WorkerQueue: return self._queue def signal(self, ident: str, topic: str, msg_dict: dict[str, Any]): if 'ident' in msg_dict: raise ValueError('ident is a reserved name') msg_dict.update({'ident': ident}) self._msg_queue.put((topic, msg_dict))
[docs] class InlineJobExecutor(BaseJobExecutor): """ Naive JobExecutor that just iterates over partitions and processes them one after another Parameters ---------- debug : bool Set this to enable additional serializability checks inline_threads : Optional[int] How many fine grained threads should be allowed? Leaving this `None` will allow one thread per CPU core """ def __init__(self, debug=False, inline_threads=None, *args, **kwargs): # Only import if actually instantiated, i.e. will likely be used import libertem.preload # noqa: 401 self._debug = debug self._inline_threads = inline_threads self._scattered = {}
[docs] @contextlib.contextmanager def scatter(self, obj): obj_id = uuid.uuid4() self._scattered[obj_id] = obj try: yield obj_id finally: del self._scattered[obj_id]
[docs] def scatter_update(self, handle, obj): self._scattered[handle] = obj
[docs] def scatter_update_patch(self, handle, patch): self._scattered[handle].patch(patch)
[docs] def run_tasks( self, tasks: Iterable[TaskProtocol], params_handle: Any, cancel_id: Any, task_comm_handler: TaskCommHandler, ): worker_queue = SimpleWorkerQueue() msg_queue = SimpleWorkerQueue() task_comm_handler.start() threads = self._inline_threads if threads is None: threads = psutil.cpu_count(logical=False) worker_context = InlineWorkerContext(queue=worker_queue, msg_queue=msg_queue) env = Environment( threads_per_worker=threads, threaded_executor=False, worker_context=worker_context, ) with task_comm_handler.monitor(msg_queue): for task in tasks: if self._debug: cloudpickle.loads(cloudpickle.dumps(task)) task_comm_handler.handle_task(task, worker_queue) result = task(env=env, params=self._scattered[params_handle]) if self._debug: cloudpickle.loads(cloudpickle.dumps(result)) yield result, task task_comm_handler.done()
[docs] def run_function(self, fn, *args, **kwargs): if self._debug: cloudpickle.loads(cloudpickle.dumps((fn, args, kwargs))) result = fn(*args, **kwargs) if self._debug: cloudpickle.loads(cloudpickle.dumps(result)) return result
[docs] def map(self, fn, iterable): return [fn(item) for item in iterable]
[docs] def run_each_host(self, fn, *args, **kwargs): if self._debug: cloudpickle.loads(cloudpickle.dumps((fn, args, kwargs))) return {"localhost": fn(*args, **kwargs)}
[docs] def run_each_worker(self, fn, *args, **kwargs): return {"inline": fn(*args, **kwargs)}
[docs] def get_available_workers(self): resources = {"compute": 1, "CPU": 1} if get_use_cuda() is not None: resources["CUDA"] = 1 return WorkerSet([ Worker(name='inline', host='localhost', resources=resources, nthreads=1) ])