Source code for libertem.analysis.base

from typing import (
    Optional, TYPE_CHECKING
)
from typing_extensions import Literal

import numpy as np

from libertem.io.dataset.base import DataSet
from libertem.udf.base import UDF, UDFResultDict

# Base classes for results moved to common for MIT licensing, refs #1031
from libertem.common.analysis import AnalysisResult, AnalysisResultSet

if TYPE_CHECKING:
    from libertem.analysis.helper import GeneratorHelper
    from libertem.web.rpc import ProcedureProtocol
    import numpy.typing as nt


[docs] class Analysis: """ Abstract base class for Analysis classes. An Analysis is the interface between a UDF and the Web API, and handles visualization of partial and full results. Passing an instance of an :class:`Analysis` sub-class to :meth:`libertem.api.Context.run` will generate an :class:`AnalysisResultSet`. The content of this result set is governed by the specific implementation of the :code:`Analysis` sub-class. .. versionadded:: 0.3.0 .. versionchanged:: 0.7.0 Removed deprecated methods :code:`get_results` and :code:`get_job` """ TYPE: Literal["UDF"] = "UDF" registry: dict[str, "type[Analysis]"] = {} def __init__(self, dataset: DataSet, parameters: dict): self.dataset = dataset def __init_subclass__(cls, id_=None, **kwargs): # override id_ with your own id # Used to register the subclass # https://www.python.org/dev/peps/pep-0487/#subclass-registration super().__init_subclass__(**kwargs) if id_ is not None: cls.registry[id_] = cls @classmethod def get_analysis_by_type(cls, id_: str) -> type["Analysis"]: return cls.registry[id_] @classmethod def get_template_helper(cls) -> type["GeneratorHelper"]: raise NotImplementedError() @classmethod def get_rpc_definitions(cls) -> dict[str, type["ProcedureProtocol"]]: return {} async def controller(self, cancel_id, executor, job_is_cancelled, send_results): raise NotImplementedError()
[docs] def get_udf_results( self, udf_results: UDFResultDict, roi: Optional[np.ndarray], damage: "nt.ArrayLike", ) -> AnalysisResultSet: """ Convert UDF results to a :code:`AnalysisResultSet`, including visualizations. Parameters ---------- udf_results raw results from the UDF roi : numpy.ndarray or None Boolean array of the navigation dimension Returns ------- list of AnalysisResult one or more annotated results """ raise NotImplementedError()
[docs] def get_udf(self) -> UDF: """ Set TYPE='UDF' on the class and implement this method to run a UDF from this analysis """ raise NotImplementedError()
[docs] def get_roi(self) -> Optional[np.ndarray]: """ Get the region of interest the UDF should be run on. For example, the parameters could describe some geometry, which this method should convert to a boolean array. See also: :func:`libertem.analysis.getroi.get_roi` Returns ------- numpy.ndarray or None region of interest for which we want to run our analysis """ raise NotImplementedError()
def get_complex_results(self, job_result, key_prefix, title, desc, damage, default_lin=True): raise NotImplementedError()
[docs] def get_parameters(self, parameters: dict) -> dict: """ Get analysis parameters. Override to set defaults """ raise NotImplementedError()
[docs] def need_rerun(self, old_params: dict, new_params: dict) -> bool: """ Determine if the analysis needs to be re-run on the data. If not, we can just call `get_udf_results` again, for example if the parameters only change the visualization. Parameters ---------- old_params : Dict new_params : Dict Returns ------- bool True iff the parameter change needs to cause a re-run on the data """ return True
class BaseAnalysis(Analysis): def __init__(self, dataset, parameters): super().__init__(dataset, parameters) self.parameters = self.get_parameters(parameters) self.parameters.update(parameters) if self.TYPE == 'JOB': raise RuntimeError("Job support was removed in 0.7") def get_roi(self): return None def get_complex_results( self, job_result, key_prefix, title, desc, damage, default_lin=True): from libertem.viz import visualize_simple, rgb_from_2dvector damage = damage & np.isfinite(job_result) magn = np.abs(job_result) angle = np.angle(job_result) wheel = rgb_from_2dvector( x=job_result.real, y=job_result.imag, vmax=np.max(magn[damage]) ) return [ # for compatability, the magnitude has key=key_prefix AnalysisResult( raw_data=magn, visualized=visualize_simple(magn, damage=damage), key=key_prefix if default_lin else f'{key_prefix}_lin', title="%s [magn]" % title, desc="%s [magn]" % desc, ), AnalysisResult( raw_data=magn, visualized=visualize_simple(magn, logarithmic=True, damage=damage), key=f'{key_prefix}_log' if default_lin else key_prefix, title="%s [log(magn)]" % title, desc="%s [log(magn)]" % desc, ), AnalysisResult( raw_data=job_result.real, visualized=visualize_simple(job_result.real, damage=damage), key="%s_real" % key_prefix, title="%s [real]" % title, desc="%s [real]" % desc, ), AnalysisResult( raw_data=job_result.imag, visualized=visualize_simple(job_result.imag, damage=damage), key="%s_imag" % key_prefix, title="%s [imag]" % title, desc="%s [imag]" % desc, ), AnalysisResult( raw_data=angle, visualized=visualize_simple(angle, damage=damage), key="%s_angle" % key_prefix, title="%s [angle]" % title, desc="%s [angle]" % desc, ), AnalysisResult( raw_data=job_result, visualized=wheel, key="%s_complex" % key_prefix, title="%s [complex]" % title, desc="%s [complex]" % desc, ), ] def get_parameters(self, parameters: dict): """ Get analysis parameters. Override to set defaults """ return parameters __all__ = ['AnalysisResult', 'AnalysisResultSet', 'Analysis', 'BaseAnalysis']