Source code for libertem_blobfinder.udf.integration

import numpy as np

from libertem.udf.base import UDF

from libertem_blobfinder.base.correlation import crop_disks_from_frame, allocate_crop_bufs


[docs]class IntegrationUDF(UDF):
[docs] def __init__(self, centers, pattern): ''' Integrate peak intensity at positions that are specified for each frame. Parameters ---------- centers : AUXBufferWrapper Peak positions (y, x) as AUX buffer wrapper of kind "nav", extra_shape (num_peaks, 2) and integer dtype. pattern : libertem_blobfinder.common.patterns.MatchPattern Match pattern with the weight for each pixels. :class:`libertem_blobfinder.common.patterns.BackgroundSubtraction` or :class:`libertem_blobfinder.common.patterns.Circular` can be good choices. Example ------- >>> from libertem_blobfinder.udf.integration import IntegrationUDF >>> from libertem_blobfinder.common.patterns import BackgroundSubtraction >>> nav_shape = tuple(dataset.shape.nav) >>> sig_shape = tuple(dataset.shape.sig) >>> extra_shape = (3, 2) # three peaks with coordinates (y, x) >>> peaks_shape = nav_shape + extra_shape >>> # Generate some random positions as an example >>> peaks = np.random.randint( ... low=0, high=np.min(sig_shape), size=peaks_shape, dtype=np.int64 ... ) >>> # Create an AuxBufferWrapper for the peaks >>> centers = IntegrationUDF.aux_data( ... data=peaks, ... kind='nav', ... dtype=np.int64, ... extra_shape=extra_shape ... ) >>> udf = IntegrationUDF( ... centers=centers, ... pattern=BackgroundSubtraction(radius=5, radius_outer=6) ... ) >>> res = ctx.run_udf(udf=udf, dataset=dataset) >>> nav_shape (16, 16) >>> # Integration result for each frame and peak >>> res['integration'].data.shape (16, 16, 3) ''' super().__init__(centers=centers, pattern=pattern)
[docs] def get_result_buffers(self): ''' :code:`integration`: Integrated intensity for each peak. Kind "nav", extra_shape (num_peaks, ) ''' dtype = np.result_type(self.meta.input_dtype, np.float32) return { 'integration': self.buffer( kind='nav', extra_shape=(self.params.centers.shape[-2], ), dtype=dtype ) }
[docs] def get_task_data(self): ''' ''' n_peaks = self.params.centers.shape[-2] mask = self.params.pattern crop_size = mask.get_crop_size() pattern = mask.get_mask(sig_shape=(2 * crop_size, 2 * crop_size)) dtype = np.result_type(self.meta.input_dtype, np.float32) crop_bufs = allocate_crop_bufs(crop_size, n_peaks, dtype=dtype, limit=1e12) kwargs = { 'crop_bufs': crop_bufs, 'pattern': pattern, } return kwargs
[docs] def process_frame(self, frame): ''' ''' crop_size = self.params.pattern.get_crop_size() crop_disks_from_frame( peaks=self.params.centers, frame=frame, crop_size=crop_size, out_crop_bufs=self.task_data.crop_bufs, ) self.results.integration[:] = np.sum( self.task_data.crop_bufs * self.task_data.pattern, axis=(-1, -2) )