Source code for libertem_holo.base.utils

"""Utility functions for working with holography data."""
from __future__ import annotations

# Functions freq_array, aperture_function, estimate_sideband_position
# estimate_sideband_size are adopted from Hyperspy
# and are subject of following copyright:
#
#  Copyright 2007-2016 The HyperSpy developers
#
#  HyperSpy is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
#  HyperSpy is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with  HyperSpy.  If not, see <http://www.gnu.org/licenses/>.
#
# Copyright 2019 The LiberTEM developers
#
#  LiberTEM is distributed under the terms of the GNU General
# Public License as published by the Free Software Foundation,
# version 3 of the License.
# see: https://github.com/LiberTEM/LiberTEM

from __future__ import annotations

from functools import lru_cache
from typing import Any, Literal
import typing
import logging

try:
    import cupy as cp
except ImportError:
    cp = None
import numpy as np
from skimage.draw import polygon
from scipy.ndimage import gaussian_filter
from scipy.optimize import least_squares
from sparseconverter import NUMPY, for_backend


log = logging.getLogger(__name__)

XPType = Any  # Union[Module("numpy"), Module("cupy")]


[docs] def freq_array( shape: tuple[int, int], sampling: tuple[float, float] = (1.0, 1.0), xp=np, ) -> np.ndarray: """Generate a frequency array. Parameters ---------- shape : (int, int) The shape of the array. sampling: (float, float), optional, (Default: (1., 1.)) The sampling rates of the array. Returns ------- Array of the frequencies. """ f_freq_1d_y = xp.fft.fftfreq(shape[0], sampling[0]) f_freq_1d_x = xp.fft.fftfreq(shape[1], sampling[1]) f_freq_mesh = xp.meshgrid(f_freq_1d_x, f_freq_1d_y) return xp.hypot(f_freq_mesh[0], f_freq_mesh[1])
[docs] def get_slice_fft( out_shape: tuple[int, int], sig_shape: tuple[int, int], ) -> tuple[slice, slice]: """Get a slice in fourier space to achieve the given output shape.""" sy, sx = sig_shape oy, ox = out_shape y_min = int(sy / 2 - oy / 2) y_max = int(sy / 2 + oy / 2) x_min = int(sx / 2 - ox / 2) x_max = int(sx / 2 + ox / 2) return (slice(y_min, y_max), slice(x_min, x_max))
def _hard_disk_aperture(shape: tuple[int, int], radius: float, xp=np): cy = shape[0]//2 cx = shape[1]//2 ys, xs = xp.meshgrid(xp.arange(shape[0]), xp.arange(shape[1]), indexing='ij') result = xp.zeros(shape, dtype=bool) result[np.sqrt((xs - cx)**2 + (ys - cy)**2) < radius] = 1 return np.fft.fftshift(result)
[docs] def estimate_sideband_position( holo_data: np.ndarray, holo_sampling: tuple[float, float], central_band_mask_radius: float | None = None, sb: Literal["lower", "upper"] = "lower", xp: XPType = np, ) -> tuple[float, float]: """Find the position of the sideband and return its position. Parameters ---------- holo_data: ndarray The data of the hologram. holo_sampling: tuple The sampling rate in both image directions. central_band_mask_radius: float, optional The aperture radius used to mask out the centerband. sb : str, optional Chooses which sideband is taken. 'lower' or 'upper' xp Pass in either the numpy or cupy module to select CPU or GPU processing Returns ------- Tuple of the sideband position (y, x), referred to the unshifted FFT. """ sb_position = (0, 0) f_freq = freq_array(holo_data.shape, holo_sampling, xp=xp) # If aperture radius of centerband is not given, it will be set to 5 % of # the Nyquist frequency. if central_band_mask_radius is None: central_band_mask_radius = np.mean(holo_data.shape) / 20.0 * np.max(f_freq) aperture = _hard_disk_aperture( holo_data.shape, central_band_mask_radius, xp=xp, ) # A small aperture masking out the centerband. aperture_central_band = np.subtract(1.0, aperture) # imitates 0 fft_holo = xp.fft.fft2(holo_data) / np.prod(holo_data.shape) fft_filtered = fft_holo * aperture_central_band # Sideband position in pixels referred to unshifted FFT if sb == "lower": fft_sb = fft_filtered[: int(fft_filtered.shape[0] / 2), :] sb_position = ( np.unravel_index(np.abs(fft_sb).argmax(), fft_sb.shape) ) elif sb == "upper": fft_sb = fft_filtered[int(fft_filtered.shape[0] / 2):, :] sb_position = np.unravel_index(np.abs(fft_sb).argmax(), fft_sb.shape) sb_position = ( xp.add( xp.asarray(sb_position), xp.asarray([int(fft_filtered.shape[0] / 2), 0]), ) ) if xp is cp: sb_position = sb_position.get() return tuple(float(c) for c in sb_position)
[docs] def estimate_sideband_size( sb_position: tuple[float, float], holo_shape: tuple[int, int], sb_size_ratio: float = 0.5, xp: XPType = np, ) -> float: """Estimate the size of sideband filter. Parameters ---------- holo_shape : array_like Holographic data array sb_position : tuple The sideband position (y, x), referred to the non-shifted FFT. sb_size_ratio : float, optional Size of sideband as a fraction of the distance to central band xp Pass in either the numpy or cupy module to select CPU or GPU processing Returns ------- sb_size : float Size of sideband filter """ h = ( np.array( ( np.asarray(sb_position) - np.asarray([0, 0]), np.asarray(sb_position) - np.asarray([0, holo_shape[1]]), np.asarray(sb_position) - np.asarray([holo_shape[0], 0]), np.asarray(sb_position) - np.asarray(holo_shape), ), ) * sb_size_ratio ) return float(np.min(np.linalg.norm(h, axis=1)))
[docs] class HoloParams(typing.NamedTuple): """HoloParams class contians all parameters necessary for reconstruction.""" sb_size: tuple[float, float] sb_position: tuple[float, float] aperture: np.ndarray # actually can be a cupy ndarray, too! hm... orig_shape: tuple[int, int] out_shape: tuple[int, int] scale_factor: float # by how much is the phase image scaled down xp: XPType @property def sb_position_int(self) -> tuple[int, int]: """Sideband position from float to int.""" return tuple( int(c) for c in self.sb_position )
[docs] @classmethod def from_hologram( cls, hologram: np.ndarray, *, central_band_mask_radius: float | None = None, out_shape: tuple = None, sb_size: float | None = None, sb_position: tuple[float, float] | None = None, circle_filter_order: int = 20, line_filter_length: float = 0.9, line_filter_width: float | None = 3, line_filter_order: int = 2, xp: XPType = np, ) -> HoloParams: """Determine reconstruction parameters from a hologram. Automatically estimates sideband position and size, and returns the main parameters needed for holography reconstruction. Parameters ---------- hologram A single hologram, can be either a numpy or a cupy array central_band_mask_radius When estimating the sideband position, use a mask of this size to remove the central band out_shape The reconstruction shape, should be larger than the sideband size sb_size Override the sideband size; determined automatically if not given sb_position Override the sideband position; determined automatically if not given circle_filter_order Order of the butterworth filter applied to the circular part line_filter_length Length ratio of the line filter; as a fraction of the distance between the central band and the sideband line_filter_width Width of the line filter, in pixels. Passing in `None` will disable the line filter completely line_filter_order Order of the butterworth filter applied to the line part xp Pass in either the numpy or cupy module to select CPU or GPU processing """ from .filters import butterworth_line, butterworth_disk hologram = xp.asarray(hologram) if sb_position is None: sb_position = estimate_sideband_position( holo_data=hologram, holo_sampling=(1, 1), sb='upper', # as both sideband positions are equivalent, picking 'upper' here central_band_mask_radius=central_band_mask_radius, xp=xp, ) if sb_size is None: sb_size = estimate_sideband_size(sb_position, hologram.shape, xp=xp) if out_shape is None: out_side = 2 * int(sb_size) + 16 out_shape = (out_side, out_side) fft_slice = get_slice_fft(out_shape, hologram.shape) # Disk aperture aperture = butterworth_disk( hologram.shape, radius=sb_size, order=circle_filter_order, xp=xp, ) sb_position_int = tuple( int(c) for c in sb_position ) if line_filter_width is None: aperture = np.fft.fftshift(aperture[fft_slice]) else: lf = butterworth_line( shape=hologram.shape, width=line_filter_width, sb_position=fft_shift_coords( sb_position_int, shape=hologram.shape ), length_ratio=line_filter_length, order=line_filter_order, xp=xp, ) aperture = xp.fft.fftshift(aperture[fft_slice] * lf[fft_slice]) return cls( sb_size=sb_size, sb_position=sb_position, aperture=aperture, out_shape=out_shape, orig_shape=hologram.shape, scale_factor=out_shape[0] / hologram.shape[0], xp=xp, )
def filter_aperture_gaussian(self, sigma: float) -> HoloParams: aperture = for_backend(self.aperture, NUMPY) new_aperture = self.xp.asarray(gaussian_filter(aperture, sigma=sigma)) return HoloParams( sb_size=self.sb_size, sb_position=self.sb_position, aperture=new_aperture, orig_shape=self.orig_shape, out_shape=self.out_shape, scale_factor=self.scale_factor, xp=self.xp, )
@lru_cache def shifted_coords_for_shape(shape): return np.fft.fftshift(np.moveaxis(np.mgrid[0:shape[0], 0:shape[1]], 0, -1), axes=(0, 1)) def fft_shift_coords(pos, shape): coords = shifted_coords_for_shape(shape) return tuple(int(n) for n in coords[pos[0], pos[1]])
[docs] def other_sb(sb_position, shape): """ Given the sb_position (as from the estimate function in fft coordinates), and the shape of the hologram, calculate the position of the other sideband position (also in fft coordinates) """ sb_pos_shifted = fft_shift_coords(sb_position, shape) center = (shape[0]//2, shape[1]//2) center_to_sb = ( sb_pos_shifted[0]-center[0], sb_pos_shifted[1]-center[1], ) other_sb = ( center[0] - center_to_sb[0], center[1] - center_to_sb[1], ) return fft_shift_coords(other_sb, shape)
def line_filter_coords(length_ratio, sb_position_shifted, width, orig_shape): # let's start from a "unit rectangle" which is 1x1 and not rotated: coords = np.array([ [0, 0], [0, 1], [1, 1], [1, 0], ]).astype(np.float32) # shift to the origin in y direction: coords -= np.array([0.5, 0]) # let's determine the length from the sideband position and ratio: center = (orig_shape[0]//2, orig_shape[1]//2) center_to_sb = ( sb_position_shifted[0]-center[0], sb_position_shifted[1]-center[1], ) sb_dist = np.linalg.norm(np.array(center_to_sb)) length = sb_dist * length_ratio length_rest = sb_dist * (1 - length_ratio) # stretch such that the width (in x direction) corresponds to the length, # and the height (y direction) corresponds to the width of the filter: scale = np.array([ [width, 0], [0, length], ]) # angle from -pi to +pi between the "x-axis" and the vector from center to sb: angle = np.arctan2(*center_to_sb) rotate = np.array([ [np.cos(-angle), np.sin(-angle)], [-np.sin(-angle), np.cos(-angle)], ]) # apply scale: coords = coords @ scale # move to the right: coords += np.array([0, length_rest]) # rotate: coords = coords @ rotate coords += np.array(center) return coords def draw_lf_rect(dest, orig_shape, sb_position_shifted, length_ratio, width): # we "draw" a rotated rectangle into `dest`, starting at `sb_position_shifted` # and ending at `length_ratio` times the vector in the direction to the center of `out_shape`. coords = line_filter_coords( length_ratio=length_ratio, sb_position_shifted=sb_position_shifted, width=width, orig_shape=orig_shape ) rr, cc = polygon(coords[:, 0], coords[:, 1], shape=dest.shape) dest[rr, cc] = True
[docs] def remove_phase_ramp( img: np.ndarray, *, roi=None, method: Literal['gradient'] | Literal['fit'] = 'gradient', ) -> tuple[np.ndarray, np.ndarray, tuple[float, float]]: """Remove a phase ramp from `img`. Returns both the compensated image and the ramp that was removed. Parameters ---------- img The (phase) input image, has to be already unwrapped roi Either a slice (as returned by `np.s_` for example), or an array of the region of interest in `img`. If not specified, the whole `img` is used. In any case, the ramp is subtraced from the whole image. method * 'gradient': the average gradient in the specified region of interest * 'fit': a least-square fit of a linear gradient to the data in the region of interest Returns ------- corrected_img The image with the ramp removed ramp The ramp that was found, as a 2D gradient (ramp_y, ramp_x) The ramp slopes """ # select the correct ROI: if roi is None: img_roi = img elif isinstance(roi, np.ndarray): img_roi = roi else: img_roi = img[roi] # determine ramp: if method == 'gradient': ramp_y = np.mean(np.gradient(img_roi, axis=0)) ramp_x = np.mean(np.gradient(img_roi, axis=1)) elif method == 'fit': def linear_gradient(c, dy, dx, y, x): return c+y*dy+x*dx y = np.arange(0, img_roi.shape[0], 1) x = np.arange(0, img_roi.shape[1], 1) def fun(params): c, dy, dx = params function = img_roi - linear_gradient(c, dy, dx, yv, xv) return function.reshape((-1, )) yv, xv = np.meshgrid(y, x, indexing='ij') m_initial = np.gradient(img_roi) dy_initial = np.mean(m_initial[0]) dx_initial = np.mean(m_initial[1]) c_initial = img_roi[0, 0] init_params = np.array([c_initial, dy_initial, dx_initial]) final_res = least_squares(fun, init_params) final_c, final_dy, final_dx = final_res.x # gradient_compensation = linear_gradient(final_c, final_dy, final_dx, yv, xv) ramp_y = final_dy ramp_x = final_dx # subtract ramp from data: yy = np.arange(0, img.shape[0], 1) xx = np.arange(0, img.shape[1], 1) y, x = np.meshgrid(yy, xx, indexing='ij') ramp_found = ramp_x * x + ramp_y * y return img - ramp_found, ramp_found, (ramp_y, ramp_x)