.. _`sample data`: ================ Sample Datasets ================ Bullseye and circular probe diffraction ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Scanning convergent beam electron diffraction data of gold nanoparticles (:code:`4DSTEM_experiment/data/datacubes/polyAu_4DSTEM/data`) and simulated strained gold (:code:`4DSTEM_experiment/data/datacubes/simulation_4DSTEM/data`) with one file using a standard circular aperture and another using a bullseye aperture. :Link: https://zenodo.org/record/3592520 :cite:`ophus_colin_2019_3592520,Zeltmann2019` :Format: HDF5 (uint16) :Dimension: 4D (100, 84, 250, 250) :Size: 2.1 GB Electron Bessel beam diffraction ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Scanning convergent beam electron diffraction with ring-shaped aperture and overlapping diffraction orders. :Link: https://zenodo.org/record/2566137 :cite:`giulio_guzzinati_2019_2566137,Guzzinati2019` :Format: Stack of DM3 (currently only scripting) :Dimension: 3D :Size: 2.6 GB .. _`hires STO`: High-resolution 4D STEM dataset of SrTiO3 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ This dataset can be used to test various analysis methods for high-resolution 4D STEM, including phase contrast methods such as ptychography. :Link: https://zenodo.org/record/5113449 :cite:`strauch_achim_2021_5113449` :Format: MIB (6 bit) :Dimension: 4D (128, 128, 256, 256) :Size: 177 MB .. _`synthetic STO`: Synthetic 4D STEM dataset based on a SrTiO3 supercell ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ This dataset allows to investigate phase contrast methods for 4D scanning transmission electron microscopy, such as ptychography. :Link: https://zenodo.org/record/5113235 :cite:`strauch_achim_2021_5113235` :Format: RAW (float32) :Dimension: 4D (100, 100, 596, 596) :Size: 14.2 GB Graphene simulated dataset ~~~~~~~~~~~~~~~~~~~~~~~~~~ :Link: https://zenodo.org/record/4476506 :cite:`t_pennycook_2021_4476506` :Format: NPY (float32) :Dimension: 4D (64, 65, 256, 256) :Size: 1.1 GB Creating random data ~~~~~~~~~~~~~~~~~~~~~~~ Random data can be generated in the following way. It should be kept in mind that the data generated in this way can only be used for simple testing as it has no physical significance. **Raw file:** .. testsetup:: sampledataraw import os import tempfile raw_temp = tempfile.TemporaryDirectory() os.chdir(raw_temp.name) .. testcode:: sampledataraw # Create sample raw file import numpy as np sample_data = np.random.randn(16, 16, 16, 16).astype("float32") sample_data.tofile("raw_sample.raw") .. testcode:: sampledataraw # Load through Python API from libertem.api import Context if __name__ == '__main__': ctx = Context() ds = ctx.load("raw", path="./raw_sample.raw", nav_shape=(16, 16), dtype="float32", sig_shape=(16, 16)) .. testcleanup:: sampledataraw os.chdir("..") raw_temp.cleanup() **HDF5 file:** .. testsetup:: sampledatahdf5 import os import tempfile hdf5_temp = tempfile.TemporaryDirectory() os.chdir(hdf5_temp.name) .. testcode:: sampledatahdf5 # Create sample HDF5 file import h5py import numpy as np file = h5py.File('hdf5_sample.h5','w') sample_data = np.random.randn(16,16,16,16).astype("float32") dataset = file.create_dataset("dataset",(16,16,16,16), data=sample_data) file.close() .. testcode:: sampledatahdf5 # Load through Python API from libertem.api import Context if __name__ == '__main__': ctx = Context() ds = ctx.load("hdf5", path="./hdf5_sample.h5", ds_path="/dataset") .. testcleanup:: sampledatahdf5 os.chdir("..") hdf5_temp.cleanup() Alternatively, you can enter the parameters (scan_size, dtype, detector_size) directly into the load dialog of the GUI. For more details on loading, please check :ref:`loading data`.